

Reg.	No.	:	***************************************

Name:.....

Third Semester B.Tech. Degree Examination, November 2014 (2013 Scheme)

13.304 : ANALOG ELECTRONICS (E)

Time: 3 Hours

Max. Marks: 100

PART-A

Answer all questions briefly. Each question carries 2 marks.

1. What are the drawbacks of collector feedback bias circuit?

- 2. Draw the labelled h-parameter equivalent circuit of CE configuration transistor.
- 3. What is base spreading resistance? Why it is not considered at low frequencies?
- Sketch the cross-section of JFET, indicating the channel and depletion regions at
 - i) pinch-off and
 - ii) saturation
- 5. Why E-MOSFET is also called 'normally-off' MOSFET?
- 6. Take two identically designed amplifiers for $A_V = 50$, $f_L = 50$ Hz cascade them. What will be the lower cut-off frequency of the cascaded combination?
- Derive equations to show that the gain stability of an amplifier is increased with the use of negative feedback.
- 8. Draw the electrical equivalent circuit for a crystal and explain its parameters.
- 9. Define slew rate. Explain its causes.
- Draw the circuit of a voltage follower and state its properties.

 $(10\times2=20 \text{ Marks})$

8

12

12

10

10

PART-B

Answer any one full question from each Module. Each full question carries 20 marks

Module - I

- a) Design a potential divider bias circuit diagram to have its Q-point at (6V, 2mA) using silicon transistor. The circuit is expected to have S ≤ 10.
 - b) Derive the expressions for the S_V , S_I and S_{β} of the above circuit.

OR

- 12. a) The h-parameters of a transistor are given as $h_{ie} = 2k$, $h_{re} = 2 \times 10^{-4}$, $h_{fe} = 80$, $h_{oe} = 50 \,\mu$ A/V. Determine the current gain, voltage gain, input resistance and output resistance of the CE amplifier, if the load resistance is 10K and source resistance is $600 \,\Omega$.
 - b) Derive the equations used above.

Module - II

- a) With neat cross-sectional sketch, explain the working of an N-channel depletion mode MOSFET and describe its drain and transfer characteristics.
 - b) Draw the CD amplifier using JFET. Deduce its equivalent circuit. Derive equations for its R_i, Av and R_o.

OR

- Draw the circuit of a single stage RC coupled CE amplifier using equivalent circuits, deduce equations for its
 - i) A_v at low, medium and high frequencies
 - ii) f_L and
 - iii) f_H.

6545

8

12

12

8

20

8

12

Module - III

- a) Explain the origin and magnitude of harmonic distortion in power amplifiers.
 Explain how even harmonics are eliminated in push-pull amplifiers.
 - b) Draw the circuit of a series pass voltage regulators with feedback. Design it for V₀ = 6V, maximum load current of 60 mA. Explain its regulation action (line and load regulation).

OR

- 16. a) Draw an RC phase shift oscillator using BJT with the h-parameter equivalent circuit, derive expression for gain and frequency.
 - b) Draw a circuit containing voltage shunt feedback and derive its gain, input and output resistances.

Module - IV

17. Draw a dual input balanced output emitter coupled differential amplifier. Obtain its equivalent circuit. Derive equations for its differential input resistance A_d, A_c and CMRR. Suggest methods to improve the CMRR. Draw circuits which can give better CMRR and explain.

OR

- 18. a) Draw and design an op-amp circuit to have an output $V_0 = 3V_1 2V_2 + 5V_3$, where V_1 , V_2 and V_3 are analog inputs.
 - b) Draw a Schmitt trigger using op-amp, for LTP = + 2.5V and UTP = + 5.5 V.
 Design the circuit.

 $(4\times20=80 \text{ Marks})$